Test of QCD in 2-5 GeV with BESII

W.B. Yan, Z.G. Zhao (Representing BES Collaboration) University of Michigan, Ann Arbor, MI, USA IHEP of CAS, Beijing, China

- I. Final Results of R-values in 2-5 GeV
- II. ξ distribution, thrust and 2nd binomial moment

III. $e^+e^- \rightarrow \pi^{\pm}(K^{\pm}) + X$

IV. Summary

Definition of R

R: one of the most fundamental quantities in particle physics, counts directly the number of quarks, their flavor and colors

Experimentally

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had}} \cdot (1 + \delta)$$

 $\begin{array}{ll} N_{had} & \text{observed hadronic events} \\ N_{bg} & \text{background events} \\ L & \text{integrated luminosity} \\ \epsilon_{had} & \text{detection efficiency for } N_{had} \\ \delta & \text{radiative correction} \end{array}$

Motivations of the R Scan

• Reducing the uncertainty of $\alpha(M_Z^2) \rightarrow$ essential for precision tests of the SM

$$\Delta \alpha_{had}(M_Z^2) = -\frac{\alpha(0)M_Z^2}{3\pi} \operatorname{Re} \int_{4m_\pi^2}^{\infty} ds \frac{R(s)}{s(s-M_Z^2) - i\varepsilon}$$

• Hunting for new physics from $a_{\mu}=(g-2)/2 \rightarrow \text{Interpretation}$ of E821 at BNL

$$a_{\mu}^{had} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s^2} R(s)$$

- Relative contributions to the uncertainties of a_{μ} and $\Delta \alpha (M_Z^2)$

ICHEP2002, Amsterdam

BES's R Scan

- Total 91 energy pts in 2-5 GeV
- Single and separated beam collision to study beam associated background
- Special runs taken at J/ψ , 2.6, 3.0, 3.5 GeV with larger data sample to determine ε_{trg}
- L measured by large angle Bhabha
- LUARLW is developed to improve JETSET for ϵ_{had} low energy region, particularly for $E_{cm}<$ 3 GeV
- D, D^{*}, D_s, D_s^{*} productions are simulated according to Eichiten Model
- A generator is built into LUARLW to handle decays of resonances in the radiative return processes $e^+e^- \rightarrow \gamma J/\psi$ or $\gamma \psi(2S)$

ICHEP2002, Amsterdam

Events Recorded by BESII

ICHEP2002, Amsterdam

5

Some Hadronic Event Shapes at E_{cm}=2.2 GeV (LUARLW)

Tune the parameters to reproduce 14 distributions of the observed kinematic variables and hadronic event shape.

Hatched region: MC Histogram: Data

Variation of Detection Efficiency and ISR in 2-5 GeV

R Values in 2-5 GeV

R Below 10 GeV

Before BES R Scan

After BES R Scan

ICHEP2002, Amsterdam

The SM Fit to $m_{\rm H}$

R(pQCD) and R(BES)

Evaluation of α_s and $\alpha_s(M_Z)$ from R(BES)

pQCD calculation agree amazingly well with BES data

$$R = 3 \sum_{q} Q_{q}^{2} \sum_{n=0}^{2} \left(\frac{\alpha_{s}}{\pi} \right)^{n}$$

Exhibits QCD correction known to $O(\alpha_s^3(s))$ so far. Precision meas. of R can determine α_s and thus evaluate $\alpha_s(M_Z)$.

Using R at 3.0 and 4.8 GeV, one has:

 $\alpha_s(3.0GeV) = 0.369^{+0.047+0.123}_{-0.046-0.130}$

 $\alpha_s(4.8GeV) = 0.183^{+0.059+0.053}_{-0.064-0.057}$

BES:

$$\alpha_s^{(5)}(M_Z) = 0.124^{+0.011}_{-0.014}$$

PDG2000: $\alpha_s^{(1)}$

$${}^{(5)}_{X}(M_{Z}) = 0.1181 \pm 0.002$$

J.H. Kuhn, M.Rreinhauser Nucl. Phys. B619(2001)588

ξ Distribution: $ξ=-ln(2p/\sqrt{s})$

MLLA/LPHD calculations

$$\frac{1}{\sigma^{h}}\frac{\sigma^{h}}{\xi} = 2K_{LPHD} \times f(\xi, Q_{0}, \Lambda_{eff})$$

$$0 \leq \xi \leq \ln(0.5 \times \sqrt{s} / \Lambda_{eff})$$

Limiting spectrum when
$$Q_0 = \Lambda_{eff}$$

 $f_{MLLA} (\xi, \tau = \sqrt{s} / \Lambda_{eff}) =$

$$\frac{4C_F}{b} \Gamma(B) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\pi} e^{-B\alpha} \left[\frac{\cosh \alpha + (1 - 2\zeta) \sinh \alpha}{\tau \frac{4N_c}{b} \frac{\alpha}{\sinh \alpha}} \right]^{\frac{1}{2}}$$
 $I_B \{ \frac{16N_c}{b} \tau \frac{\alpha}{\sinh \alpha} [\cosh \alpha + (1 - 2\zeta) \sinh \alpha] \}$

B=a/b, a=11N_c/3+2n_f/3N_c², b=(11N_c-2n_f)/3 $C_{\rm F}$ =(N_c²-1)/2N_c=4/3, N_c: quark flavor = 3 $n_{\rm f}$: # qark flavor produced $I_{\rm B}$: modified Bessel Function. α = α_0 +ix, where tanh α_0 =2 ζ -1, ζ =1- ξ / τ

ICHEP2002, Amsterdam

Multiplicity and Second Binomial Moment

Thrust and Mean Thrust

Thrust:

$$T = \max \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}_{T}|}{\sum_{i} |\vec{p}_{i}|}$$

$$\langle \tau \rangle = \langle \tau^{pert} \rangle + \langle \tau^{power} \rangle; \langle \tau^{pert} \rangle = A \cdot \tilde{\alpha}_{s} + (B - 2A) \tilde{\alpha}_{s}^{2}; \tilde{\alpha}_{s} = \alpha_{s} (\sqrt{s}) / 2\pi ; A, B \text{ constant}$$

$$\left\langle \tau^{power} \right\rangle = \frac{4C_F}{\pi} \frac{2M}{\pi} \left(\frac{\mu_I}{\sqrt{s}} \right) \cdot \left[\tilde{\alpha}_0(\mu_I) - \alpha_s(\sqrt{s}) \right]$$
$$- \frac{\beta_0}{2\pi} \left(\ln \frac{\sqrt{s}}{\mu_I} + \frac{K}{\beta_0} + 1 \right) \alpha_s^2(\sqrt{s}) \right]$$

$$\widetilde{\alpha}_{0}(\mu_{I}) \equiv \frac{p}{\mu_{I}} \int_{0}^{\mu_{I}} \frac{d\mu}{\mu} \alpha_{s}(\mu)$$

ICHEP2002, Amsterdam

Summary

- BES measured R in 2-5 GeV with average uncertainties of 6.6% (a factor of 2-3 improvement)
 →significant impact on the SM fit: m_{Higgs} moves up from 61 GeV to 90 GeV, up limit from 170 GeV to 210 GeV
- R scan data at continuum can be used to test QCD - Preliminary results of ξ , T, and R₂ are consistent with e⁺e⁻, ep and vN data at high energy.
 - $\xi,$ T consistent with MLLA/LPHD predictions, but R_2 differs to NLO calculation
- CLEOC and BESIII can provide more accurate data at continuum to test QCD at a few percent level.

$\sigma[e^+e^- \rightarrow \pi^{\pm}(K^{\pm}) + X]$ and Fragmentation Function, S/U Ratio

S/U: input parameters in hadron production generator \rightarrow needed for determining ϵ_h